Acute phase after haematopoietic stem cell transplantation
Bleeding and thrombotic complications

L. Graf; M. Stern
Stem Cell Transplant Team and Division of Haematology, University Hospital Basel, Switzerland

Keywords
Haematopoietic stem cell transplantation, diffuse alveolar haemorrhage, haemorrhagic cystitis, veno-occlusive disease, transplant-associated microangiopathy

Summary
The transplantation of allogeneic or autologous haematopoietic stem cells is an established treatment for many malignant and non-malignant diseases of the bone marrow. Intensive cytoreductive regimens administered before transplantation induce prolonged and severe cytopenia of all haematopoietic lineages. Thrombocytopoenia leads to an increased risk of bleeding, which may be further aggravated by consumption of plasmatic factors as a result of tumour lysis or after antibody administration. At the same time, patients after transplantation are also at increased risk of thrombotic complications. Endothelial damage induced by radio- and chemotherapy, indwelling catheters, prolonged immobilization and a high incidence of systemic infection all contribute to the frequent occurrence of thromboembolic events in this population.

This review discusses the incidence and risk factors for haemorrhagic and thrombotic complications after stem cell transplantation. Special emphasis is given to complications occurring specifically in the context of transplantation such as diffuse alveolar haemorrhage, haemorrhagic cystitis, veno-occlusive disease, and transplant associated microangiopathy.

Haematopoietic stem cell transplantation (HSCT) is the transfer of multipotent haematopoietic stem cells. It is currently the only curative option for many malignant and non-malignant haematological diseases. Peripheral blood, bone marrow or umbilical cord are used as stem cell source.

- In autologous HSCT, the patient’s own stem cells are returned to the body to resume haematopoiesis after myeloablative high-dose chemotherapy.
- In allogeneic HSCT, healthy donor stem cells from a family or unrelated volunteer donor are administered after myeloablative or non-myeloablative conditioning.

The allogeneic graft has the ability to initiate immune reactions through recognition of recipient antigens, which may lead to beneficial graft-versus-tumour effects and/or deleterious graft-versus-host disease (GvHD) (1, 2). Throughout the process of both autologous and allogeneic stem cell transplantation, haemostatic challenges can occur (3).

Growing evidence emerges that endothelial damage is a key contributing factor to both haemorrhagic and thrombotic complications through promotion of a procoagulant surface (3, 4).

Endothelial damage is the consequence of chemo- and radiotherapy administered before autologous and allogeneic HSCT (5), but occurs also due to graft-versus-host reactions in allogeneic HSCT (6). Other factors that can contribute to endothelial damages are treatment with growth factors (7) and indwelling catheters.

Data on alterations of procoagulant, anticoagulant and fibrinolytic factors in the early phase after HSCT are relatively sparse. It is reported that the levels of
natural anticoagulants protein C and antithrombin, the vitamin K-dependent factors V and X and plasminogen are reduced (8, 9), fibrinogen, von Willebrand factor, plasminogen activator inhibitor and tissue plasminogen activator are elevated (8, 10, 11).

In addition to the effects of the plasmatic coagulation, the myelosuppressive effect of the conditioning regimen leads to thrombocytopenia, which contributes to bleeding complications. All these changes in the coagulation system are responsible for an increased incidence of haemostatic complications in HSCT patients (3).

Bleeding complications

Acute bleeding is associated with increased morbidity and mortality, and is a frequent complication after both allogeneic and autologous HSCT. Several studies have consistently shown that the risk of clinically relevant bleeding is at least 10-fold higher in a transplant population compared to general medical oncology patients undergoing chemotherapy (12–16). This section of the manuscript addresses incidence and risk factors of bleeding complications in the early phase after HSCT.

Incidence

In the so far largest cohort study published by Gerber and co-workers (14), 230 of 1514 patients (15.4%) undergoing HSCT experienced clinically significant bleeding complications. This is comparable to other data (17, 18) even though “significant bleeding” is not defined uniformly. The majority of the bleeding events (39%) occurred in the gastrointestinal tract, followed by genitourinary (23%) and pulmonary bleedings (17%), and haemorrhage of the central nervous system (10%).

Given that 24% of these events were fatal, 3.6% of the HSCT patients in this cohort died from bleeding. Other authors reported comparable or slightly lower mortality rates from bleeding complications (15, 16).

Risk factors

The strongest predictor of bleeding was the initiation of anticoagulation during the first half year following HSCT (OR 3.1). Other strong risk factors included the development of veno-occlusive disease (VOD; OR 2.2) and GvHD (OR 2.4) (14). In the study of Phlusch (15), two major peaks of bleeding incidences were identified:

- in patients without coexisting GvHD at around 10 days after HSCT during the thrombocyte nadir,
- around one month after HSCT in patients developing GvHD after engraftment.

In general, allogeneic HSCT recipients develop a more severe bleeding tendency than autologous HSCT recipients (RR 1.8) (14, 15). However, recent data suggest that the excess bleeding risk after allogeneic HSCT is restricted to patients developing GvHD, and that patients without GvHD are not at increased risk of bleeding after allogeneic HSCT (15, 19).

Almost all HSCT patients after myeloablative conditioning undergo an aplastic period with severe thrombocytopenia, which may become more severe and prolonged if acute GvHD occurs (20). Prolonged thrombocytopenia is an additional independent risk factor for bleeding episodes (15). A 1.5-fold (3.8% vs. 2.5%, p<0.01) and 3.8-fold (2.0 vs. 0.52%, p<0.01) risk of mild and severe bleeding, respectively, was observed in patients with a thrombocytopenic period of four months when compared with patients with a thrombocytopenic period of only one month. Furthermore, thrombocytopenia is a major risk factor for intracranial haemorrhage (21).

Anti-T-cell-globulin (ATG) is frequently given before transplantation as GvHD prophylaxis (22). Its use has been associated with an elevated risk of haemos-tatic disturbances and an increase in bleeding tendency (17, 23). The interaction of ATG with the haemostatic system are not well defined, but activation of the coagulation cascade as a consequence of cytokine release is supposed (23), which would explain the features of disseminated intra-vascular coagulation frequently observed in patients following ATG administration.

HSCT-specific haemorrhagic complications

Diffuse alveolar haemorrhage

Diffuse alveolar hemorrhage (DAH) is a non-infectious pulmonary complication after HSCT with a poorly understood pathogenesis and a high mortality rate. In a prospective study by Majhail et al. (24), 45 of 1919 (2.3%) examined HSCT patients developed DAH, and 60-day survival from onset of haemorrhage was only 16%. Similar frequencies with a comparable incidence after autologous and allogeneic HSCT, but somewhat lower mortality rates are reported in other studies (25–27). In general, patients after autologous transplantation show a much better outcome after DAH develops (26). DAH is associated with (24)

- older age,
- allogeneic donor source,
- myeloablative conditioning regimen,
- acute GvHD.

However, a clear cause for the condition has not been identified so far. It is speculated that cytokine release following damage to alveolar capillary endothelium mediates the development of DAH.

Therefore, high-dose corticosteroid therapy is used considered first-line treatment (28), but dose and duration of steroid administration are not well defined. Figure 1 shows sequential pulmonary CT scans of a patient successfully treated with high dose steroids (1 g/day for 5 days) for DAH developing after allogeneic HSCT.

Despite the use of corticosteroids, mortality of DAH remains high, making the search for alternative or adjunct therapies necessary. The use of tranexamic acid in addition to corticosteroids showed promising results in a retrospective analysis (29) with a lower 100-day DAH mortality compared to patients treated with corticosteroids alone (44% vs. 83%), but until now this observation awaits confirmation in a prospective setting. Furthermore, in anecdotal reports, recombinant factor VIIa (rFVIIa) adminis-
tered intravenously (30, 31) or intratracheally (32, 33) in DAH patients achieved temporary control of bleeding.

Haemorrhagic cystitis

Haemorrhagic cystitis (HC) accompanied by microscopic or gross haematuria with clots that can lead to urinary tract obstruction occurs in 12–25% of HSCT patients (34, 35). HC is often associated with painful dysuria and resolves spontaneously in most cases. Nevertheless, HC has the potential to cause significant morbidity and mortality due to bladder tamponade causing renal failure (35).

- Early HC (day 1–3 after HSCT) is usually related to the toxic effects of the conditioning regimen, particularly the use of high dose cyclophosphamide.
- A second peak in HC – which is unrelated to conditioning regimen toxicity – occurs one to two months after HSCT (34, 36–39) and is associated with
 - allogeneic grafts,
 - advanced age,
 - GvHD,
 - thrombocytopenia,
 - coagulopathy and
 - viral infection (particularly polyoma BK virus, less frequently adenovirus and cytomegalovirus).

Treatment of HC is mainly supportive as the condition is self-limiting in most cases and neither antiviral therapy (34, 40) nor haemostatic therapy with rFVIIa (41) have proved to alleviate patients' symptoms successfully.

Thrombotic complications

While less common and apparent than haemorrhage, thromboembolic complications also occur frequently in the early post-transplant period. Several treatment-related factors favour the development of both thromboembolic complications, as well as atypical thrombotic events such as veno-occlusive disease and transplant-associated microangiopathy: residual tumour load at the time of transplantation, prolonged immobilization, endothelial damage induced by the cyto-reductive regimen or by graft-versus-host reactions, severe bacterial and fungal infections, and the presence of indwelling central venous catheters all contribute to a pro-coagulant state (42). In addition, the majority of HSCT recipients do not receive thromboprophylaxis due to the profound thrombocytopenia induced by the conditioning regimen.

This part of the manuscript will summarize recent data on the incidence, pathogenesis and treatment of the most frequent thrombotic complications occurring after haematopoietic stem cell transplantation.

VTE, catheter-related thrombosis

In the largest retrospective study so far incorporating more than 1500 transplant procedures, Gerber et al. defined incidence and risk factors for thrombotic complications after haematopoietic stem cell transplantation (14). All patients had indwelling catheters and none received pharmacological thromboprophylaxis. Two thirds of patients underwent autologous, the remaining allogeneic HSCT. By six months after transplantation, the incidence of symptomatic venous thromboembolism (VTE) amounted to 4.9%.

Fig. 1

Evolution of diffuse alveolar haemorrhage in sequential computed tomography scans.

a) typical ground-glass infiltrates with sub-pleural sparing at diagnosis

b) initial worsening of pulmonary function and radiological changes after 24 hours despite prompt initiation of high dose steroid treatment
c, d) slow resolution one and two weeks after diagnosis and initiation of treatment
The majority of events were catheter-related VTEs (3.6%), whereas lower extremity DVT (0.7%) and pulmonary embolism (0.6%) occurred less frequently.

These incidences are in line with those found in smaller studies published previously (15, 43). Thromboembolic events occurred at a median interval from transplantation of 35 days and at a median platelet count of 75 G/l with one third of events occurring at platelet counts below 50 G/l. The rate of clinically relevant bleeding complications in this cohort was significantly higher, by comparison (15.2%).

Risk factors for VTE

The main risk factors predisposing to VTE were history of prior VTE (odds ratio 2.9) and development of graft-versus-host disease (OR 2.4). Similarly, other studies have shown that patients after allogeneic transplantation have higher rates of VTE compared to those treated with autologous transplantation, and within the allogeneic population development of graft-versus-host disease is consistently associated with an increased risk of VTE (15, 44). As a possible explanation, a recent detailed serial analysis of patients undergoing transplantation revealed that the onset of GvHD correlated with increased thrombin generation (as measured by F1 and F2 fragments) and impaired fibrinolysis (detected by a decrease in PAI-1) (45).

Polymorphisms in coagulation proteins such as the factor V G1691A mutation (factor V Leiden) or the prothrombin G20210A mutation are well-established risk factors for VTE in the general population. Only small studies have so far analyzed the impact of these mutations in transplant recipients. While Pihusch et al. found no effect of mutations (including factor V Leiden and prothrombin G20210A) mutation are well-established risk factors for VTE in the general population. Only small studies have so far analyzed the impact of these mutations in transplant recipients. While Pihusch et al. found no effect of mutations (including factor V Leiden and prothrombin G20210A) in a cohort of 89 patients Abdellkefi et al. described an average relative risk of 3.3 for carriers of the factor V Leiden or prothrombin G20210A mutation, or low anti-thrombin, protein C or protein S activity (46, 47). Events were too rare, however, to calculate individual relative risk ratios. There is still little reason to believe that these polymorphisms should not operate in the same manner as amply described in non-transplant settings.

Treatment and prevention of VTE

Whether thromboprophylaxis might reduce the incidence of catheter-associated VTE in transplant patients is unclear. One retrospective study suggested that a short course of nadroparin (for at least 10 days after catheter insertion) did not reduce the incidence of VTE, which occurred at a median of 22 days after catheter insertion (48). Longer courses of LMWH (low molecular weight heparin) prophylaxis have so far not been studied. A single arm trial with minidose warfarin (1 mg/d fixed dose if platelet count >50 G/l) produced a comparatively low rate of VTE (3 catheter-related and 1 deep vein thrombosis occurring during 292 courses of high-dose chemotherapy with autologous stem cell rescue) with an acceptable low bleeding rate (4 bleeding episodes) (49). No controlled studies have, however, evaluated thromboprophylaxis in this setting so far.

Treatment of established VTE after HSCT is as for thromboembolic events outside the HSCT setting. Caution must be given to the increased risk of bleeding due to mucositis and thrombocytopenia in the immediate post-transplant phase, which may require dose reduction of the anti-coagulants, intensive monitoring and potentially prolonged and intensive haemostatic support with platelet concentrates.

Veno-occlusive disease

Veno-occlusive disease (VOD, also termed sinusoidal obstructive syndrome, SOS) is an infrequent but severe complication after stem cell transplantation. Pathogenetically, toxic injury of the sinusoidal endothelial cells and hepatocytes is believed to lead to cell edema causing micro-occlusions, which eventually cause progressive hepatic damage and multi-organ failure. The diagnosis of VOD is primarily clinical (Table 1). As hepatic failure after HSCT can be caused by alternative processes such as graft-versus-host disease, diagnosis of VOD is frequently confirmed histologically after transdermal or transjugular liver puncture.

Histology typically shows microthromboses and fibrin deposition in hepatic central venules, hepatic congestion, and signs of portal hypertension in the absence of inflammatory infiltrates. Reversal of the blood flow in hepatic veins documented by duplex ultrasound analysis also supports the diagnosis. However, this requires an experienced examiner and is frequently only detectable in the final stages of the disease. Various plasmatic markers of coagulation and fibrinolysis have been investigated as markers of VOD. Thrombomodulin, P- and E-selectins, tissue factor pathway inhibitor (TFPI), soluble tissue factor, and plasminogen activator inhibitor (PAI-1) have all been shown to be up-regulated during VOD (50). An elevated PAI-1 level has also been advocated as a diagnostic and prognostic marker for VOD (51).

The frequency of VOD is in the range of 10% after allogeneic stem cell transplan-

Tab. 1

<table>
<thead>
<tr>
<th>criteria</th>
<th>symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>At least two factors must be present within 20 days after transplantation</td>
</tr>
<tr>
<td></td>
<td>- hyperbilirubinaemia (total serum bilirubin >2 mg/dl)</td>
</tr>
<tr>
<td></td>
<td>- hepatomegaly or upper right quadrant pain of liver origin</td>
</tr>
<tr>
<td></td>
<td>- sudden weight gain (>2% of baseline body weight)</td>
</tr>
<tr>
<td>Baltimore</td>
<td>Hyperbilirubinemia and two additional factors must be present within 100 days of transplantation</td>
</tr>
<tr>
<td></td>
<td>- hyperbilirubinemia (total serum bilirubin >2 mg/dl)</td>
</tr>
<tr>
<td></td>
<td>- hepatomegaly</td>
</tr>
<tr>
<td></td>
<td>- right upper quadrant pain of liver origin</td>
</tr>
<tr>
<td></td>
<td>- sudden weight gain (>5% of baseline body weight)</td>
</tr>
</tbody>
</table>

© Schattauer 2012

Hämostaseologie 1/2012
The encouraging results with defibrotide in the treatment of VOD have also spawned interest in its use as a prophylactic agent. Several studies have shown excellent results using prophylactic defibrotide without undue toxicity (54, 55). Unfortunately, none of the studies on defibrotide treatment contained a control arm. Therefore many questions regarding therapeutic efficacy, optimal dosing and dosing interval remain open at this point in time. Therapeutic strategies that have been found to be ineffective in the treatment or prevention of VOD include the administration of tPA, antithrombin and low-dose heparin (50). Ursodeoxycholic acid, a hydrophilic non-hepatotoxic bile acid is frequently administered in VOD prophylaxis despite conflicting results from randomized trials due to its excellent toxicity profile and its potential protective effect from liver GvHD. Another important strategy to prevent severe VOD is to incorporate risk stratification, which enables transplant physicians to offer patients at very high risk for VOD a reduced intensity conditioning or T-cell depletion of the graft.

Transplant-associated thrombotic microangiopathy

Transplant-associated (thrombotic) microangiopathy (TA-TMA, or TAM) is another serious complication after transplantation. It occurs in 5–10% of patients treated with allogeneic transplantation and has a high mortality rate in excess of 50%. It shares many clinical and laboratory features with thrombotic thrombocytopenic purpura (TTP), a condition caused by a marked reduction of the von Willebrand factor cleaving protease ADAMTS-13, which leads to the accumulation of macro-molecules of von Willebrand factor causing thrombocytic microangiopathy. Thrombocytopenia, presence of schistocytes, elevation of lactic dehydrogenase, bilirubin and reticulocytes as signs of hemolysis, kidney failure, and neurologic abnormalities may occur in both conditions.

In contrast to TTP, TAM is not caused by ADAMTS-13 deficiency and plasma exchange only rarely improves the condition. While many etiological aspects of TAM are still unresolved, the initiating event is believed to be endothelial cell injury which promotes thrombosis and fibrin deposition in the microcirculation resulting in microangiopathic hemolytic anemia and platelet consumption (56). Risk factors for the development of TAM (57) include

- fungal or viral infection,
- presence of GvHD,
- female sex,
- unrelated or HLA-mismatched donor grafts,
- the use of
 - calcineurin inhibitors such as cyclosporine and
 - mTOR inhibitors such as sirolimus.

TAM usually develops within the first 100 days after transplantation. In an effort to standardize the diagnosis of TAM, two sets of consensus criteria have recently been proposed (Tab. 2). It remains to be seen which set of criteria will prove more useful in daily practice.

<table>
<thead>
<tr>
<th>Tab. 2</th>
<th>Consensus criteria for the diagnosis of transplant-associated thrombotic microangiopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Working Group (62)</td>
<td>• Increased percentage of schistocytes in peripheral blood smear (>4%)</td>
</tr>
<tr>
<td></td>
<td>• De novo, prolonged or progressive thrombocytopenia (≤50 G/L or >50% decrease from previous counts)</td>
</tr>
<tr>
<td></td>
<td>• Sudden and persistent increase in lactate dehydrogenase</td>
</tr>
<tr>
<td></td>
<td>• Decrease in haemoglobin concentration or increased red blood cell requirements</td>
</tr>
<tr>
<td></td>
<td>• Decrease in serum haptoglobin concentration</td>
</tr>
<tr>
<td>BMT CTN Toxicity Committee (57)</td>
<td>• RBC fragmentation and ≥2 schistocytes per high-power field on peripheral smear</td>
</tr>
<tr>
<td></td>
<td>• Concurrent increased serum lactate dehydrogenase above institutional baseline</td>
</tr>
<tr>
<td></td>
<td>• Concurrent renal* and/or neurologic dysfunction without other explanations</td>
</tr>
<tr>
<td></td>
<td>• Negative direct and indirect Coombs test results</td>
</tr>
</tbody>
</table>

* Doubling of serum creatinine from baseline or 50% decrease in creatinine clearance from baseline.

VOD is rare after autologous transplantation and after allogeneic HSCT with reduced intensity conditioning.

While mild VOD may resolve spontaneously, the prognosis of patients with advanced stages is grim. To date, there is no treatment with proven efficacy for VOD and therefore standard treatment of VOD is mainly supportive. Increasingly, defibrotide, a polydisperse mixture of single-stranded oligonucleotides with antithrombotic and fibrinolytic effects on the microvascular endothelium is used to treat VOD. Defibrotide binds to microvascular endothelium via adenosine receptors, modulates platelet activity by enhancing levels of endogenous prostaglandins and thromboxanenol, and promotes fibrinolysis via upregulation of TFPI and tissue plasminogen activator (t-PA). In clinical phase II studies, defibrotide showed remission rates in patients with VOD in the range of 40% (52, 53). Importantly, responses occurred in the absence of severe hemorrhage or other toxicity. Large phase III trials are currently being conducted.
scribe patients with TAMP responding to the B-cell depleting anti-CD20 antibody rituximab (58). As of now, modification of the immunosuppressive regimen is frequently proposed as the first treatment step: as inhibitors of both calcineurin and mTOR have been implicated in the development of TAMP, immunosuppression is frequently switched to high-dose corticosteroids. Finally, results of trials with eculizumab – a monoclonal antibody against the complement protein C5 producing excellent results in atypical hemolytic uremic syndrome (59) – are eagerly awaited.

References

© Schattauer 2012 Hämostaseologie 1/2012

L. Graf; M. Stern: Bleeding and thrombotic complications after HSCT

Downloaded from www.haemostaseologie-online.com on 2017-06-19 | (IP: 54.191.40.80)
For personal or educational use only. No other uses without permission. All rights reserved.